Hand Held Transceiver dc Adapter Circuit Diagram

This Hand Held Transceiver dc Adapter Circuit Diagram provides a regulated 9-V source for operating a Kenwood TR-2500 hand-held transceiver in the car. The LM317T`s mounting tab is electrically connected to its output pin, so take this into account as you construct your version of the adapter. The LM317T regulator dissipates 2 or 3 W in this application, so mount it on a 1-x -2-inch piece of `is-inch-thick aluminum heatsink. 

 Hand Held Transceiver dc Adapter Circuit Diagram

Hand Held Transceiver dc Adapter Circuit Diagram

Read Full article[...]

Simple Adjustable Notch Filter Circuit Diagram

Adjustable Notch Filter Circuit Diagram. In applications where the rejected signal might deviate slightly from the null on the notch network, it is advantageous to lower the Q of the network. This insures some rejection over a wider range of input frequencies. The figure shows a circuit where the Q may be varied from 0.3 to 50. A fraction of the output is fed back to R3 and C3 by a second voltage follower, and the notch Q is dependent on the amount of signal fed back. A second follower is necessary to drive the twin `T` from a low-resistance source so that the notch frequency and depth will not change with the potentiometer setting.

Adjustable Notch Filter Circuit Diagram


 
Read Full article[...]

Building Electric Guitarwiring Electronics

Guitar Wiring on Electric Guitar Wiring   Watch That Flying Solder
Electric Guitar Wiring Watch That Flying Solder.


Guitar Wiring on Wiring Page
Wiring Page.


Guitar Wiring on Typical Strat Three Pickup Wiring  The Switch Is Usually Installed
Typical Strat Three Pickup Wiring The Switch Is Usually Installed.


Guitar Wiring on Pickup Blend Pot Guitar Wiring
Pickup Blend Pot Guitar Wiring.


Guitar Wiring on Gibson    50s Wiring On A Stratocaster   Premier Guitar
Gibson 50s Wiring On A Stratocaster Premier Guitar.


Guitar Wiring on Source   Http   Www Seymourduncan Com Support Wiring Diagrams
Source Http Www Seymourduncan Com Support Wiring Diagrams.


Guitar Wiring on Capacitor Wiring
Capacitor Wiring.


Guitar Wiring on Ibanez Guitar Wiring Diagram
Ibanez Guitar Wiring Diagram.


Guitar Wiring on Stratocaster Wiring Harness
Stratocaster Wiring Harness.


Guitar Wiring on Building Electric Guitar   Wiring The Electronics
Building Electric Guitar Wiring The Electronics.


Read Full article[...]

Flashing LED Battery status Indicator

Signals when an on-circuit battery is exhausted 5V to 12V operating voltage
A Battery-status Indicator circuit can be useful, mainly to monitor portable Test-gear instruments and similar devices. LED D1 flashes to attire the users attention, signaling that the circuit is running, so it will not be left on by mistake. The circuit generates about two LED flashes per second, but the mean current drawing will be about 200µA. Transistors Q1 and Q2 are wired as an uncommon complementary astable multivibrator: both are off 99% of the time, saturating only when the LED illuminates, thus contributing to keep very low current consumption. 

Circuit diagram :
Flashing-LED Battery
Flashing-LED Battery-status Indicator Circuit Diagram

The circuit will work with battery supply voltages in the 5 - 12V range and the LED flashing can be stopped at the desired battery voltage (comprised in the 4.8 - 9V value) by adjusting Trimmer R4. This range can be modified by changing R3 and/or R4 value slightly.

When the battery voltage approaches the exhausting value, the LED flashing frequency will fall suddenly to alert the user. Obviously, when the battery voltage has fallen below this value, the LED will remain permanently off. To keep stable the exhausting voltage value, diode D1 was added to compensate Q1 Base-Emitter junction changes in temperature. The use of a Schottky-barrier device (e.g. BAT46, 1N5819 and the like) for D1 is mandatory: the circuit will not work if a common silicon diode like the 1N4148 is used in its place.

Parts :
R1,R7__________220R  1/4W Resistors
R2_____________120K  1/4W Resistor
R3_______________5K6 1/4W Resistor
R4_______________5K  1/2W Trimmer Cermet or Carbon
R5______________33K  1/4W Resistor
R6_____________680K  1/4W Resistor
R8_____________100K  1/4W Resistor
R9_____________180R  1/4W Resistor
C1,C2____________4µ7  25V Electrolytic Capacitors
D1____________BAT46  100V 150mA Schottky-barrier Diode
D2______________LED  Red 5mm.
Q1____________BC547   45V 100mA NPN Transistor
Q2____________BC557   45V 100mA PNP Transistor
B1_______________5V to 12V Battery supply
Notes :
  • Mean current drawing of the circuit can be reduced further on by raising R1, R7 and R9 values.


Streampowers
Read Full article[...]

Tracking Dual Output Bipolar Supply Circuit Diagram

This Tracking Dual Output Bipolar Supply Circuit Diagram is useful for a bench supply in the lab. Separate or tracking operation is possible. The regulators should be properly heatsinked. Tl is a 24-Vac wall transformer of suitable current capacity. 

Tracking Dual Output Bipolar Supply Circuit Diagram 

Tracking Dual Output Bipolar Supply Circuit Diagram

Read Full article[...]

How to make an electric magnet

]

Then turn the coil around the nail but before turning the coil cover the nail with a peace of paper.Then attach every thing according to the following circuit.finally give the power and close it to the metal dust then you can see they stick to the nail..# Now you know how to make an electric magnet

# As your second project make an electric bell
Read Full article[...]

Fuse Box BMW 328i 1999 Engine Compartment Diagram

Fuse Box BMW 328i 1999 Engine Compartment Diagram - Here are new post for Fuse Box BMW 328i 1999 Engine Compartment Diagram.

Fuse Box BMW 328i 1999 Engine Compartment Diagram



Fuse Box BMW 328i 1999 Engine Compartment Diagram
Fuse Box BMW 328i 1999 Engine Compartment Diagram

Fuse Panel Layout Diagram Parts: inside mirror electrochromic, interior light, light module, make up mirror light, navigation, on board computer, outside mirror, parking aid, passenger compartment, radio, rain sensor, rear wiper, roler sun blind, secondary air pump, side airbag, socket, speed control, starter interlock, telephone, trailer coupling, window lift, windscreen washer.
Read Full article[...]

1 W Home Stereo Amplifier Rise

This is a one watt home stereo amplifier module project using the KA2209 IC from Samsung, which is equivalent to the TDA2822. It operates from 3-12V DC & will work from a battery since the dormant current drain is low. It requires no heat sink for normal use. The input & output are both ground referenced. Maximum output will be obtained with a 12V power supply & 8 ohm speaker, however it is suitable for driving headphones from a supply as low as 3V.

The Specifications of the home stereo amplifier :

D.C. input : 3 – 12 V at 200 – 500 mA max
Idle current : approx. 10 mA
Power output : > 1 Watt max. 4-8 ohms, 12V DC
Freq. Resp. : approx. 40 Hz to 200 kHz, 8 ohm, G=10
THD : < 1 % @ 750 mW, 4-8 ohm, 12V
Gain : approx. x10 (20 dB) OR x100 (40dB)
S/N ratio : > 80 dB, G = 20 dB
Sensitivity : < 300 mV, G = 20 dB
Input Impedance : approx. 10 k ohm

Description 

The gain is adjustable from ten to 100, i.e. twenty to 40 dB. Start with feedback resistors R1 and R3 of 1k ohm, this will give a gain of ten which ought to be adequate for most applications. In case you need more gain, you can remove resistors R1 and R3.This will give a gain of about 100, or 40 dB.The input attenuation can be adjusted by the potentiometer which can be used as a volume control. The IC gain ought to be kept as low as necessary to accomplish full output, with the in put potentiometer and your signal source at maximum.


Voltage Gain = 1+ R1/R2 = 1+R3/R4, however the maximum gain with no outside feedback is about 100, or 40dB. (GdB = 20log Gv)

This will keep the signal to noise ratio as high as feasible. Additional gain provided by the amplifier will reduce the S/N ratio by a similar amount, since the input noise figure is constant. Other values for R1 and R3 of between 1k and 10k ohm can be used if an intermediate gain level is necessary.

If driving a pair of headphones, you may also need a 100 ohm resistor in series with each output to reduce the output level, depending on headphone impedance & sensitivity. Make positive you start with the volume right down to check. Numerous headphones may be driven from the amplifier in the event you wish, since most headphones have at least 16 ohm impedance, or more often 32 ohm.

There are only a few outside parts, the IC contains most of the necessary circuitry. R1,R2 and R3,R4 are the feedback resistors. C1 provides power supply decoupling. C2 and C3 are the input coupling capacitors, which block any DC that might-be present on the inputs. C4,C5 block DC in the feed back circuit from the inverting inputs, and C6,C7 are the output coupling capacitors. C8, R5 and C9,R6 act as Nobel networks providing a high frequency load to maintain stability at frequencies where loud speaker inductive reactant may become excessive. The pot provides adjustable input level attenuation.


Read Full article[...]